Korea Advanced Institute of Science and Technology (KAIST)
한국과학기술원

South Korea

KAIST is the first and top science and technology university in Korea. In the wake of its 50th anniversary, KAIST is scaling up new research initiatives in order to become a ‘first mover.’ This is in line with its plan to pivot away from its previous role as a ‘fast follower,’ a role that led to Korea’s rapid industrialization.

Established in 1971 by the Korean government, KAIST was tasked with the very clear institutional mission to make innovations that would drive the country’s economic growth engine, especially in the fields of ICT and electronics. KAIST has fully achieved its institutional mission, creating a very successful educational model that is now being benchmarked by many other countries.

Turning 50 years old in 2021, its R&D strategy has shifted to focus on creating global value for the future. Among others, the Global Singularity Research Project aims to identify the most critical projects which will make the biggest difference in people’s lives.

This innovative research project selects the two most creative and future-oriented research projects every year. Young researchers’ projects on new materials, neuro-rehabilitation, and brain function redesign selected as this research program will surely bring breakthroughs which will serve as game changers for the future.

For more information on KAIST research, visit https://www.kaist.ac.kr/en/html/research/04.html

KAIST retains sole responsibility for content © 2020 KAIST.

1 June 2019 - 31 May 2020

Region: Global
Subject/journal group: All

The table to the right includes counts of all research outputs for Korea Advanced Institute of Science and Technology (KAIST) published between 1 June 2019 - 31 May 2020 which are tracked by the Nature Index.

Hover over the donut graph to view the FC output for each subject. Below, the same research outputs are grouped by subject. Click on the subject to drill-down into a list of articles organized by journal, and then by title.

Note: Articles may be assigned to more than one subject area.

Count Share
378 152.13

Outputs by subject (Share)

Subject Count Share
Life Sciences 97 29.64
Physical Sciences 209 81.43
23 8.30
Nanoparticles Derived from the Natural Antioxidant Rosmarinic Acid Ameliorate Acute Inflammatory Bowel Disease
2020-05-28
1
Affinity-Driven Design of Cargo-Switching Nanoparticles to Leverage a Cholesterol-Rich Microenvironment for Atherosclerosis Therapy
2020-05-01
0.40
Se-Rich MoSe2 Nanosheets and Their Superior Electrocatalytic Performance for Hydrogen Evolution Reaction
2020-05-01
0.13
Gate-Tunable Reversible Rashba–Edelstein Effect in a Few-Layer Graphene/2H-TaS2 Heterostructure at Room Temperature
2020-04-08
0.57
Diatom Frustule Silica Exhibits Superhydrophilicity and Superhemophilicity
2020-03-30
0.43
Interaction Mediator Assisted Synthesis of Mesoporous Molybdenum Carbide: Mo-Valence State Adjustment for Optimizing Hydrogen Evolution
2020-03-20
0.64
A General Strategy to Atomically Dispersed Precious Metal Catalysts for Unravelling Their Catalytic Trends for Oxygen Reduction Reaction
2020-01-30
0.20
Nanotransfer Printing on Textile Substrate with Water-Soluble Polymer Nanotemplate
2020-01-28
0.33
Surface Energy Change of Atomic-Scale Metal Oxide Thin Films by Phase Transformation
2020-01-16
0.09
Fibertronic Organic Light-Emitting Diodes toward Fully Addressable, Environmentally Robust, Wearable Displays
2020-01-10
0.38
Label-Free Tomographic Imaging of Lipid Droplets in Foam Cells for Machine-Learning-Assisted Therapeutic Evaluation of Targeted Nanodrugs
2020-01-10
0.17
Complete Complex Amplitude Modulation with Electronically Tunable Graphene Plasmonic Metamolecules
2020-01-06
0.50
Reversible Alloying of Phosphorene with Potassium and Its Stabilization Using Reduced Graphene Oxide Buffer Layers
2019-11-18
0.08
Ultrasensitive Anti-Interference Voice Recognition by Bio-Inspired Skin-Attachable Self-Cleaning Acoustic Sensors
2019-11-11
0.17
3D Printer-Based Encapsulated Origami Electronics for Extreme System Stretchability and High Areal Coverage
2019-10-28
0.27
Transpiration Driven Electrokinetic Power Generator
2019-10-28
0.75
Aqueous Nanoclusters Govern Ion Partitioning in Dense Polymer Membranes
2019-10-22
0.08
Conformal 3D Nanopatterning by Block Copolymer Lithography with Vapor-Phase Deposited Neutral Adlayer
2019-10-10
0.92
Flexible Two-Dimensional Ti3C2 MXene Films as Thermo-Acoustic Devices
2019-09-30
0.23
Multi-Asymmetric Ion-Diode Membranes with Superior Selectivity and Zero Concentration Polarization Effect
2019-09-24
0.20
Continuous Meter-Scale Synthesis of Weavable Tunicate Cellulose/Carbon Nanotube Fibers for High-Performance Wearable Sensors
2019-08-27
0.52
Diverse Structural Conversion and Aggregation Pathways of Alzheimerʼs Amyloid-β (1–40)
2019-08-27
0.07
Amorphous Tin Oxide Nanohelix Structure Based Electrode for Highly Reversible Na-Ion Batteries
2019-06-25
0.19
24 12.64
15 6.53
6 4.33
9 2.54
39 14.93
16 9.42
3 0.21
30 8.73
2 0.21
2 1.05
3 1.44
3 0.15
1 0.08
2 0.17
10 3.86
1 0.08
6 2.96
3 0.49
10 3.05
1 0.25
Chemistry 156 73.65
Earth & Environmental Sciences 3 0.43

Highlight of the month

Stretchable tissue samples make for faster analysis

© Andriy Onufriyenko/Getty

© Andriy Onufriyenko/Getty

A technique that temporally makes tissue samples both robust and stretchy will speed up studies that involve running multiple tests over extended times on the same tissue samples.

Some research projects require delicate tissues samples to be interrogated multiple times over several years. This is both time consuming and difficult to do without damaging the samples.

Now, a team that included researchers from the Korea Advanced Institute of Science and Technology (KAIST) has found a way to convert biological tissues into elastic hydrogels.

The stretchability of the treated tissues makes them more robust and easier to label them with fluorescent dyes. Furthermore, the change is reversible so that the tissues revert to their normal state.

The team demonstrated the technique by using to produce elasticized slabs of brain tissue. They anticipate that the team will accelerate the investigation of animal models and human samples.

Supported content

  1. Nature Methods 17, 609–613 (2020). doi: 10.1038/s41592-020-0823-y

View the article on the Nature Index

See more research highlights from Korea Advanced Institute of Science and Technology (KAIST)

More research highlights from Korea Advanced Institute of Science and Technology (KAIST)

1 June 2019 - 31 May 2020

International vs. domestic collaboration by Share

  • 48.28% Domestic
  • 51.72% International

Note: Hover over the graph to view the percentage of collaboration.

Note: Collaboration is determined by the fractional count (Share), which is listed in parentheses.

Affiliated joint institutions and consortia

Return to institution outputs