Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University


The Institute of Functional Nano & Soft Materials (FUNSOM), founded in 2008, is characterized by its global vision and interdisciplinary research directions. It is located at Soochow University in Suzhou, a historic city with a dynamic culture. It is led by the founding director Prof. Shuit-Tong Lee, a member of the Chinese Academy of Sciences (CAS). The Institute includes a provincial key lab: Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices. Two years after the foundation of FUNSOM, the corresponding educational college, College of Nano Science and Technology (CNST) was established in 2010. Furthermore, FUNSOM is part of the Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), which is under the National 2011 Plan Program in China.

Shuit-Tong Lee is the founding director of FUNSOM and NANO-CIC, and the founding dean of CNST. He is a member of Chinese Academy of Sciences (CAS), and a fellow of the Academy of Sciences for the Developing World (TWAS). Lee is a distinguished material scientist and has been designated by Thomson Reuters as a Highly Cited Researcher in 2016 and one of the World’s Influential Scientific Minds in 2015. With a global vision, Lee has established the mission of FUNSOM and CNST: internationalization and a interdisciplinary spirit. Therefore, FUNSOM has been regarded as an ‘International Island in China’.

FUNSOM is proud of its outstanding faculty, all of whom have overseas research experience. Faculty members at FUNSOM have received multiple talent awards, including National ‘1000 Talents Scheme’, Yangtze River Scholar, National Science Fund for Distinguished Young Scholars, and National ‘1000 Youth Talents Scheme’. FUNSOM has also received multiple innovation team awards, such as Returned Overseas Chinese Contribution Award (Innovation Team), and Jiangsu Provincial Science & Technology Innovation Team.

FUNSOM is focused on interdisciplinary research and the development of nanomaterials and nanotechnology, spanning multiple fields including optoelectronics, new energy, environment and biomedicine. There are currently five major research directions: Functional Nano Materials & Devices, Organic Optoelectronic Materials & Devices, Structured Functional Surfaces & Interfaces, Nano-Biotechnology & Nanomedicine, and Materials Simulation & Rational Design. There is both fundamental and applied research at FUNSOM, supported by an R&D chain of ‘molecular design—material synthesis-device fabrication—technology application’. Therefore, FUNSOM is dedicated to pushing forward commercialization of pioneering nanotechnologies, and generating new opportunities for the economic growth of Suzhou City and Jiangsu Province.

The research at FUNSOM is exceptional in terms of publications, paper citations and patents. Researchers at FUNSOM have published over 900 Science Citation Index papers, most of which were high-impact journals, including Science and Nature Communications. Paper citations exceeded 1700 in 2012. To date, FUNSOM has been awarded 42 invention patents and one utility patent. Ever since the foundation of FUNSOM, Soochow University has been ranked as the top ten most improved universities in the world in terms of weighted fractional count of Nature Index (it increased dramatically from 56.04 in 2012 to 108.47 in 2015).

FUNSOM has been awarded research funds of over US$51 million up to 2016, including National High-tech R&D Program of China, National Science & Technology Major Project, National Basic Research Program of China-Young Scientists Project. FUNSOM has advanced research facilities, including high resolution transmission electron microscope, scanning electron microscope, high-performance computing cluster systems, X-ray photoelectron spectroscope, OLED vacuum thermal evaporators and clean rooms.

FUNSOM is also committed to promote international cooperation. SUN-WIN Joint Research Institute for Nanotechnology, and Soochow University-Western University Center for Synchrotron Radiation Research are two joint programs between FUNSOM and universities in North America. Moreover, FUNSOM has organized conferences and workshops in order to enhance the communication with worldwide researchers, such as ‘Forum on Nano Optoelectronic Materials & Devices and its Industrialization’, and ‘Sino-German Workshop on Functionalization of Wide-bandgap Semiconductor Materials for Chemical and Biochemical Sensing’.

FUNSOM retains sole responsibility for content © 2017 FUNSOM.

1 January 2017 - 31 December 2017

Principal institution: Soochow University

Region: Global
Subject/journal group: All

The table to the right includes counts of all research outputs for Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University published between 1 January 2017 - 31 December 2017 which are tracked by the Nature Index.

Hover over the donut graph to view the WFC output for each subject. Below, the same research outputs are grouped by subject. Click on the subject to drill-down into a list of articles organized by journal, and then by title.

Note: Articles may be assigned to more than one subject area.

54 27.69 27.69

Outputs by subject (WFC)

Subject AC FC WFC
Chemistry 47 24.79 24.79
Physical Sciences 31 14.80 14.80
Life Sciences 4 2.11 2.11

Highlight of the month

Refreshing rechargeable batteries with aluminium and urea

© Emilija Manevska/Moment/Getty

© Emilija Manevska/Moment/Getty

An aluminium-based electrolyte could pave the way towards cheap, sustainable and high-performance rechargeable batteries.

Energy storage is essential, from rechargeable batteries in phones and electric cars to storing renewable energy for the power grid. Redox flow batteries (RFBs), which store chemical energy in fluids, are a promising option but their anolytes — the conductive fluid, or electrolyte, at the positively charged end of the cell — are made from expensive and potentially toxic ingredients. A team including researchers from the Institute of Functional Nano & Soft Materials at Soochow University made an anolyte by mixing aluminium chloride with urea and a solvent that prevents the fluid reacting to temperature changes. They tested the anolyte in an RFB, and found it could store 165 Watt hours per kilogram, one of the highest energy storage capacity of any RFB to date.

Aluminium is an abundant and non-toxic metal, a cheap, safe and environmentally friendly alternative to lithium in rechargeable batteries.

Supported content

  1. Angewandte Chemie 56, 7454 –7459 (2017). doi: 10.1002/anie.201703399

View the article on the Nature Index

See more research highlights from Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University

More research highlights from Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University

Return to institution outputs