Institute for Basic Science (IBS)
기초과학연구원

South Korea

IBS was established in 2011 aiming at advancing the frontiers of knowledge and fostering leading scientists of tomorrow by pursuing excellence in basic science research. Since then, IBS has been providing infrastructure for long-term, large-scale, and group research as well as supporting autonomous research activities of researchers, focusing on exploration of creative knowledge. In 2018, IBS had moved to its new building in Daejeon, South Korea. Watch the tour video of our headquarters and some of our research centers.

As a basic science research institute representing Korea, IBS is running 31 Centers in physics, chemistry, mathematics, life sciences, and interdisciplinary areas as of January 2021 and planning to increase the number to 50. IBS has announced 2021 call for applications for IBS Research Center Directors and Chief Investigators. Applications will be accepted until March 2, 2021. For more information, please visit www.ibs.re.kr/eng/sub04_02_04_01.do.

The institute’s main philosophy is to select a world renowned scientist as a Center’s director and create an environment where the director can concentrate on his/her own creative research. That is because IBS believes that creativity can be maximized when excellent researchers focus on conducting challenging research in an autonomous research environment.

IBS has been generating research outcomes that attract world-wide attention and was named one of Nature Index Rising Stars 2016. Despite a short history, the institute is standing shoulder to shoulder with international basic science research institutes. With the 2018 completion of its new headquarters designated as an urban science park, IBS will maximize merits of group and interdisciplinary research as well as bring IBS’ research capabilities together. It will more actively recruit young researchers at home and abroad with its expansion, heralding an even brighter future.

Since 2016, IBS has been operating Young Scientists Fellowship (YSF) under the slogan ‘Initiate your own research at IBS. In order to intensify its support to grow the next-generation leaders of scientific investigators, IBS has been launching a new research unit called Pioneer Research Centers (PRC), a subset of the existing IBS HQ Centers since early 2019. PRCs consist of up to five Chief Investigators (CIs) each. A CI leads their own research group to pioneer new fields and focus on challenging research in the basic sciences. CIs are required to have scientific excellence equivalent to that of a principle investigator at a globally renowned research institute or to have great potential to reach the aforementioned level in the near future. IBS will continue its efforts to become a research hub where young scientists can devote themselves to their science with full autonomy and independence.

The Institute for Basic Science (IBS) retains sole responsibility for content © 2021 Institute for Basic Science (IBS).

1 May 2020 - 1 April 2021

Region: Global
Subject/journal group: All

The table to the right includes counts of all research outputs for Institute for Basic Science (IBS) published between 1 May 2020 - 1 April 2021 which are tracked by the Nature Index.

Hover over the donut graph to view the FC output for each subject. Below, the same research outputs are grouped by subject. Click on the subject to drill-down into a list of articles organized by journal, and then by title.

Note: Articles may be assigned to more than one subject area.

Count Share
325 83.28

Outputs by subject (Share)

Subject Count Share
Physical Sciences 167 39.62
Life Sciences 61 14.27
Chemistry 151 42.39
Earth & Environmental Sciences 10 2.23

Highlight of the month

Liquid metals form exotic cocktails

© oxygen/Moment/Getty Images

© oxygen/Moment/Getty Images

A range of functional composites based on liquid metals have been created using a new method. The composites could find uses ranging from high-performance heat conductors to shielding against electromagnetic interference or ultraviolet light.

Combining gallium metal with other metals to make a range of functional alloys is relatively easy. But making new functional materials by incorporating non-metal particles such as graphene oxide, graphite or diamond into gallium has been harder to achieve.

Now, a team led by researchers at the Institute for Basic Science in South Korea has shown that a range of materials combining non-metallic particles with gallium can be created by using particles of appropriate size and vigorous mixing.

These putty-like composites could find use in a diverse range of applications, depending on the particles used. For example, combining gallium with diamond gave outstanding heat-transfer properties that exceeded those of commercial materials, while the graphene-oxide composite exhibited excellent shielding performance.

Supported content

  1. Science Advances 7, eabe3767 (2021). doi: 10.1126/sciadv.abe3767

View the article on the Nature Index

See more research highlights from Institute for Basic Science (IBS)

More research highlights from Institute for Basic Science (IBS)

1 May 2020 - 1 April 2021

International vs. domestic collaboration by Share

  • 57.7% Domestic
  • 42.3% International

Note: Hover over the graph to view the percentage of collaboration.

Note: Collaboration is determined by the fractional count (Share), which is listed in parentheses.

Return to institution outputs